Comprehensive environmental management systems for stormwater runoff

Audrey Mayer, James Bonta*, Punam Parikh, William Shuster, Michael Taylor, Hale Thurston, Betsy Warnemuende**

National Risk Management Research Laboratory
Sustainable Technology Division, Sustainable Environments Branch;
* USDA-ARS North Appalachian Experimental Watershed; ** USDA-ARS National Soil Erosion Research Laboratory

Mission

- We are concerned with promoting multidisciplinary approaches to sustainable environmental management systems
- And accomplishing this calling through the integration of hydrologic, ecological, economic, and legal perspectives.

Building a scientific foundation for sound environmental decisions

Research Focus

 One way that we articulate this mission is through the examination of storm water runoff regimes in urban ecosystems, and how these might be better managed. RESEARCH & DEVELOPMENT

Building a scientific foundation

for sound

decisions

environmental

Importance of impervious surface

- Impervious surface is one of the primary agents of hydrologic change in urbanizing watersheds
- Its impacts on hydrologic cycles and terrestrial ecological regimes are multifold
- The mechanisms through which these impacts are manifested are not well understood, hampering effective management of these impacts.

Building a scientific foundation for sound environmental decisions

Major projects

- We have identified two specific research areas:
- In-situ watershed assessment of the alteration of hydrologic cycle in response to urbanization (Coshocton OH); and
- Determine costs and benefits of distributed, participatory approaches to managing storm water runoff at the watershed scale (Shepherd Creek OH).

Building a scientific foundation for sound environmental decisions

Indicators and their utility – a looming question

- For each of these projects we test for the utility of indicators or models as to how well they mark conditions or change in the environment
- We then evaluate how ones uses indicators to evaluate whether a prescription or treatment was successful in improving endpoint values from their baseline condition

Building a scientific foundation for sound environmental decisions

Coshocton Urbanization Project

RESEARCH & DEVELOPMENT
Building a scientific foundation

for sound

decisions

environmental

A unique research setting

- Established by USDA-ARS, late 1930's
- Nearly 30 sub-watersheds, draining from 1 to 5000 acres
- Charged to study the effects of climate and different types of agricultural management on site hydrology
- Up to 60 years of hydrologic data from selected watersheds
- Part of a nationwide network of watershed stations; different climate zones, soils

Building a scientific foundation for sound environmental decisions

Research rationale

- USEPA and USDA-NRCS are interested in knowing the specific effects of urbanization on watershed hydrology and water quality
- The purpose of this research is to quantify these impacts under controlled and realistic experimental conditions

Building a scientific foundation for sound environmental decisions

Anticipated benefits

- Come to understand runoff formation and routing processes at practical scales of management
- Provide support for improved modeling practice (e.g., SWMM, SWAT, WMS, AGNPS, TR55)
- Develop innovative best-management practices (BMPs) for controlling runoff through in-situ testing and evaluation

Building a scientific foundation for sound environmental decisions

Laboratory component

Laboratory component: objectives and approach

- Develop laboratory rainfall simulation methods sensitive to different sizes and arrangements of impervious surface
- Evaluate the hydrologic, erosional, and water quality impacts of these various impervious surface configurations
- This data will be used to inform correspondent field work

Building a scientific foundation for sound environmental decisions

Field Component

environmental

decisions

Field component: Objectives

- Expand laboratory concepts to field scale
- Smaller watersheds committed exclusively to BMP testing and evaluation
- Larger watersheds are used to monitor impacts of stepwise urbanization

Building a scientific foundation for sound environmental decisions

Field component: Approach

- Stepwise increase in percent impervious surface (0 to 40 percent, in 5 percent steps); then implement BMPs at 40 percent level
- We will also simulate pervious surfaces in the form of either seeded or sod turf crops
- Impervious surface will be implemented as pitched-guttered roofs (larger watersheds), roads (smaller watersheds)

Building a scientific foundation for sound environmental decisions

Track watershed responses to development

Project Timeline

- Stepwise implementation of impervious surfaces in larger watersheds planned for Fall 2004
- Implement roads in smaller watersheds to generate elevated runoff, test BMPs
- We depend on natural precipitation regimes to accumulate data – variable time frame

Building a scientific foundation for sound environmental decisions

The Shepherd Creek Pilot Watershed Multidisciplinary management of stormwater runoff

Building a scientific foundation for sound environmental decisions

Centralized versus decentralized stormwater management

Decentralization of Best Management Practices (BMPs)

- Attempt to more closely mimic predevelopment hydrologic regimes
- Residential: rain barrels, rain gardens
- Commercial/Industrial: detention/retention ponds, porous pavement

Shepherd Creek pilot project goals

- Develop legal, socially-acceptable method for management of stormwater quantity
- To reduce or eliminate existing sources of runoff, we aim to couple patterns in economic behaviors with hydrologic and ecological endpoints to eventually implement BMPs
- Then we will link costs with any observed hydrologic and ecological benefit

Building a scientific foundation for sound environmental decisions

Shepherd Creek project: research questions

- Will a decentralized management strategy lead to significant hydrologic and ecological improvements in the watershed?
- Will an economically-based market mechanism provide the appropriate incentives to install sufficient BMPs throughout a watershed?

Building a scientific foundation for sound environmental decisions

Tradable allowances for stormwater control?

- Challenges
 - water quantity not regulated
 - stormwater fees not tightly tied to excess runoff
- Potential solution
 - auction approach
 - relies on strategic trading behavior, but in more controlled environment

Building a scientific foundation for sound environmental decisions

Economics: general

- Effective BMP adoption will incorporate:
 - hydrologic considerations
 - economic incentives
 - stakeholder participation.
- Employ tradable allowance system to determine stakeholder willingness to adopt BMPs for use in designing a successful market mechanism

Building a scientific foundation for sound environmental decisions

Earlier modeling effort indicated benefits

- Earlier modeling work estimated total cost of BMPs implemented through tradable credit system
- This work suggested that this cost would be significantly less per unit volume than other, more infrastructureintensive abatement schemes
- May offer a unique tool to municipalities to improve stormwater management

Building a scientific foundation for sound environmental decisions

Economics: preliminary case study

- Design an auction to purchase stormwater BMPs from private landowners in Shepherd Creek
 - Develop a computerized bidding game that simulates the auction and test with student (local university) test population
 - Run the computerized bidding game with subgroups of landowners in SC to calibrate
 - Use results to estimate the price of stormwater BMPs in this watershed and refine the BMP auction approach

Building a scientific foundation for sound environmental decisions

Development of pilot project

- Carry out the auction with homeowners in Shepherd Creek & install BMPs
- To determine the ecological effectiveness of this economic policy instrument, long-term monitoring needs to be done

Building a scientific foundation for sound environmental decisions

Shepherd Creek pilot project: monitoring effort

- Before-After, Control-Impact (BACI) experimental design
- Impact in this study is the implementation of BMPs in headwaters, and on the basis of economic incentives
- Ecological and hydrologic data are collected periodically before and after impact

Building a scientific foundation for sound

Shepherd Creek: geography

streams ORDER Detail - Land use, Flow Monitoring Structures Land Use CLASS 0, Unknown 112, Agriculture-Farm 121, Agriculture-Timber 310, Industry-Food/Drink Proc. 400, Commercial-Vacant 401, Comm-Apts 4-19 units 402, Comm-Apts 20-39 units 403, Comm-Apts 40+ units 500, Residential-Vacant 501, Residential-Vac. 10-29 ac 508, Residential-Street 510, Residential-Single Family 520, Residential-Two Family 530, Residential-Three Family 610, Pub Owned-State of OH 640, Pub Owned-Municipalities 645, Pub Owned-Metro Hous. Auth. 685, Pub Owned-Public Worship 710, Abated-Comm. Reinvest 720, Abated-Munic, Reinvest 998, Unknown

999, Unknown

Shepherd Creek Study Sites

Building a scientific foundation for sound environmental decisions

Example 1: Reference, forested site

- Located within Mt.
 Airy forest, a city park
- This site represents a healthy headwater stream, for this area
- Alluvial bed, woody debris, reasonable meander

Building a scientific foundation for sound environmental decisions

Example 2: Residential, treatment site

- Headwaters were filled, culverted to channel flows into this reach
- Moderate meander giving way to channelization and lateral migration is considerable
- Adjacent to CSO

Building a scientific foundation for sound environmental decisions

Hydrologic, ecological monitoring data

- Hydrology-Sedimentology
 - Discharge
 - Precipitation
 - Evapotranspiration
 - Stream morphology
 - Sediment dynamics
 - Soil Hydrology
 - Detailed soil survey

- Ecology
 - Algae
 - Aquatic invertebrates
 - In-stream habitat
 - Riparian habitat
- Water Quality
 - Basic microbiology
 - pH, DO, °C
 - Turbidity
 - N,P, Anions

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound

environmental

decisions

Project Timeline

- We expect BMP implementation in either 2006 or 2007, with at least 2 years post-installation monitoring
- Economic effectiveness of auction format will be evaluated in 2007
- Hydrologic ecological effectiveness evaluated in 2009